A Direct Route to Fluorinated Cyclopentadienes and Cyclopentadienyl Anions

Richard D. Chambers* and Martin P. Greenhall

Department of Chemistry, University Science Laboratories, South Road, Durham DH1 3LE, UK

Fluoride-ion induced reactions of systems CH_2XY with the novel diene $[CF_3CF=C(CF_3)]_2$ provides a route to derived cyclopentadienes and cyclopentadienyl anions *via* an unusual cyclisation step.

In an accompanying communication,¹ we described a good synthesis of the interesting fluorinated diene (1) and indicated that cyclisation reactions proceed to yield heterocycles. We now describe a novel analogous approach to, hitherto, relatively inaccessible cyclopentadienes and cyclopentadienyl anions derived from (1). Laganis and Lemal² reported the extremely acidic diene (2) by an imaginative but low yield route and observed the derived cyclopentadienyl anion (3) in solution; Janulis and Arduengo³ obtained derivatives using related methodology. It is now established that carbanions may be generated from suitably acidic systems using fluoride ion⁴ and consequently reaction of diene (1) with malononitrile, in the presence of caesium fluoride at room temperature, gave rapid reaction. Pentadienyl anions (4, 4a, X = Y =CN) were observed in solution by ¹⁹F NMR spectroscopy (stereo-chemistry determined by coupling constants) and then slow cyclisation occurred giving the cyclopentadienyl salt (6) but in this case the intermediate diene (5; X = Y = CN) was not observed. However, when the corresponding reaction was carried out with CH₂XY (X = CN; Y = tetrafluoro-4-pyridyl,

Reagents: i, CsF, MeCN, room temp.

 C_5F_4N) then, although the anions (4) were not observed, the cyclopentadiene derivative (5) could actually be isolated and therefore this provides a route to some highly electron-deficient cyclopentadienes, which was a major objective.

1129

Surprisingly, on further reaction, the diene (5) gave a mixture of salts (6) (Z = CN and C_5F_4N , ca. 3:7), *i.e. via* loss of either CN or C_5F_4N from (5).

The cyclisation step (4a) to (5) is extremely interesting because, as a 5-endo-trig process, it is formally 'disallowed' by the Baldwin rules.⁵ It seems more appropriate, therefore, to regard the process as an initial electrocyclic ring closure (4a) to (4b), followed by elimination of fluoride ion, to give (5). What is especially significant is that, while electrocyclic ring closures that are heterocyclic analogues of the conversion (4a) to (4b) are abundant in the literature, we are aware of only one example of an open-chain pentadienyl anion undergoing ring closure to give a carbocyclic system.⁷ The mechanism of this reported ring closure was regarded as uncertain,⁶ whereas the mechanism seems quite clear for the process (4a) to (5) to (6). The ready loss of CN from (5) may be understood as arising from the ready formation of the fluorinated cyclopentadienyl (Cp_F) anions from (7).

Characterisation of the intermediate ions (4, 4a; X = Y = CN) followed from ¹⁹F NMR spectroscopy, which showed appropriate J values for CF₃-F and CF₃-CF₃ coupling; likewise the spectra of ions (6) showed two signals due to CF₃, which were multiplets (J ca. 5 Hz), suggesting that rotation of the groups is restricted. FAB mass spectra are particularly dramatic in that they show the parent ions for (4) and (6) with remarkably little fragmentation in the case of the latter anions (6). ¹³C NMR data are also consistent with the assignments.

Received, 9th April 1990; Com. 0/01591A

References

- 1 M. Briscoe, R. D. Chambers, S. J. Mullins, T. Nakamura, and F. G. Drakesmith, J. Chem. Soc., Chem. Commun., 1990, preceding communication.
- 2 E. D. Laganis and D. M. Lemal, J. Am. Chem. Soc., 1980, 102, 6633.
- 3 E. P. Janulis Jr. and A. J. Arduengo III, J. Am. Chem. Soc., 1983, 105, 3563.
- 4 J. H. Clark, Chem. Rev., 1980, 80, 429.
- 5 J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734.
- 6 R. Huisgen, Angew. Chem., Int. Ed. Engl., 1980, 19, 947.
- 7 C. W. Shoppee and G. N. Henderson, J. Chem. Soc., Perkin Trans. 1, 1975, 765.